Bagikan Jika diketahui matriks \left (\begin {array} {cc}p+2 & 2 \\ 3 & 5\end {array}\right)+\left (\begin {array} {cc}p & 6 \\ 6 & q+3\end {array}\right)=\left (\begin {array} {ll}4 & 8 \\ 9 & 5\end {array}\right) ( p+2 3 2 5)+( p 6 6 q +3) =( 4 9 8 5), tentukan nilai p p dan q q ! diketahuimatriks p 1 3 1 dan matriks yaitu 45/20 cerminan dari matriks PQ adalah jika kita maka konsep atau rumus yang digunakan nah matriks p = 1 2 3 1 x matriks kimia yaitu 5 perkalian matriks matriks pertama dibagi baris matriks kedua dibagi kolom maka = 1 * 4 + 2 * 2 lalu 1 kaliditambah 2 * 03 * 4 ditambah 1 * 2 Lalu 3 * 5 + 1 dikali nol maka = 1815 maka matriks PQ 8 5 14 15 kita mencari determinan dari matriks PQ misalkan matriks= abcd maka determinan dari matriks m yaitu diagonal 2 Diketahui matriks A =. Jika determinan dari matriks A tersebut adalah 1, maka tentukanlah nilai x yang memenuhi! Jawab: Det A = 1 (2x(x + 5)) - (3 (x + 1)) = 1. x = -21/2. 7. Jika matriks P = adalah matriks singular, tentukan nilai a yang memenuhi! Jawab: Matriks singular adalah jika nilai determinannya 0. Det P = 0 (a . a. 5 + 2 . 4 Tentukanmatriks PQ Pembahasan Perkalian dua buah matriks Soal No. 4 Tentukan nilai a + b + x + y dari matriks-matriks berikut ini Diketahui bahwa P = Q Pembahasan Kesamaan dua buah matriks, terlihat bahwa 3a = 9 β†’ a = 3 2b = 10 β†’ b = 5 2x = 12 β†’ x = 6 y = 6 y = 2 Sehingga: a + b + x + y = 3 + 5 + 6 + 2 = 16 Soal No. 5 1 Jika P matriks berordo 2 Γ— 2, tentukan matriks P yang memenuhi a. 2 1 3 4 4 1 5 4 βˆ’ = βˆ’ βˆ’ P b. Β» Susunlah persamaan kuadrat jika diketahui akar- Tentukan persamaan kuadrat yang akar-akarnya 3 Diketahui akar-akar persamaan kuadrat 2x Jika akar-akar persamaan kuadrat 3x Harga 1 karung beras yang beratnya 25 kg adalah Himpunan 3+4 +2=0 2 βˆ’ +5=0 Jika penyelesaian sistem persamaan di atas adalah dan . Tentukan nilai + . (Selesaikan menggunakan cara invers). Jawaban : Diketahui: {3 +4 +2=0 2 βˆ’ +5=0 Ditanyakan: nilai + Jawab: {3 +4 +2=0 ⇔3 +4 =βˆ’2 2 βˆ’ +5=0 ⇔2 βˆ’ =βˆ’5 Diubah ke matriks (3 4 2 βˆ’1)( )=(βˆ’2 βˆ’5) . ο»ΏMatematikaALJABAR Kelas 11 SMAMatriksKesamaan Dua MatriksKesamaan Dua MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0044Diketahui kesamaan matriks berikut. [5 a 3 b 2 c]=[5 2 3 ...0404Diketahui matriks A=a+2 1-3 b -1 -6, B=2 a b-3 -...0106Diketahui matriks 5 a 3 b 2 c=5 2 3 2 a 2 a...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoOke untuk soal seperti ini diketahui matriks p + 2235 + k dengan matriks P 66 Q + 3 Y = 4 8 9 5 Oke untuk suara seperti ini kita cukup menyelesaikan operasi matriks nya disini kita diberikan matriks menjumlahkan dua matriks kemudian = 1 matriks. Oke ini kita akan jumlahkan P + 2 dengan p maka kita tempatkan kita jumlahkan iniP + 2 dengan p maka kita dapatkan P + 2 + 12 P + 2 kemudian 2 + dengan 6 itu = 8 kemudian 3 + 6 = 9,5 + titik-titik + 3 = Y + 8 Oke itu = matriks 4895. oke di sini kita melihat bahwa untuk posisi yang bersesuaian maka kita dapatkan 2 P + 2 itu = 4 kemudian ditambah 8 = 5, maka kita Sederhanakan atau selesaikan maka kita dapatkan 2 P = + 2 ketika pindah menjadi minus 2 atau kurang 2 maka kita dapatkan 4 kurang 2 = 2 kemudian 2 nya juga Pindah * 2 menjadi / 2 maka 2 per 2 maka a = p = 1 kemudian ditambah 8 itu sama dengan 5 maka aku ini itu 5 dikurangi 8 maka kita dapatkan kuenya itu = minus 3 Oke jadi nilai dari P nya itu = 1 dan kuenya itu sama dengan minus Dan itu jawaban untuk soal kali ini sampai jumpa pada pembahasan selanjutnya. BerandaDiketahui P = 2 x 4 ​ βˆ’ 1 2 ​ . Jika P adalah ...PertanyaanDiketahui P = 2 x 4 ​ βˆ’ 1 2 ​ . Jika P adalah matriks singular, maka nilai x adalah ....Diketahui . Jika P adalah matriks singular, maka nilai x adalah ....-4-1148AAA. AcfreelanceMaster TeacherPembahasanMatriks singular adalah matriks yang memiliki determinan sama dengan 0, sehinggaMatriks singular adalah matriks yang memiliki determinan sama dengan 0, sehingga Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!406Yuk, beri rating untuk berterima kasih pada penjawab soal!Β©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Kelas 11 SMAMatriksOperasi Pada MatriksOperasi Pada MatriksInvers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videoDisini kita memiliki pertanyaan diketahui matriks A = min 2 min 31 min 1 matriks b = 0 Min 5 10 mi5 dan XA = b. Maka matriks X yaitu adalah jadi untuk tipe soal seperti ini untuk mencari X yaitu kita bisa menggunakan cara x akar = b. Maka untuk mencari X hanya akan pindah ruas itu maka menjadi B dikalikan dengan a invers lalu untuk mencari invers. Bagaimana jadi untuk mencari invers itu kita bisa menggunakan cara seperti ini jadi sebelum mencari invers itu kita harus mencari determinan dulu misalkan kita mau mencari determinan a dari a b c d. Maka itu determinannya adalah ini kita kalikan silang terlebih dahulu ini dengan yang ini lalu yang ini dengan ini maka di sini A dikalikan dengan De terlebih dahulu yang tadi dikurangkan dengan b * c Nah setelahDapatkan hasilnya lalu kita bisa masukkan ke rumus untuk mencari invers jadi untuk rumus mencari invers itu. Misalkan kita mau mencari invers invers itu rumusnya adalah 1 per determinan hasil yang tadi dikalikan dengan jadi tadi kan bentuk matriks yaitu abcd lalu untuk di sini itu bentuk matriks nya akan ditukar jadi di sini Dek Anya ditukar ke sini lalu untuk b dan c itu sama-sama dikali minus menjadi minus B dan C seperti itu Sekarang kita coba masuk ke soalnya terlebih dahulu maka disini untuk soalnya itu kita akan mencari determinan dari a nya untuk mendapatkan invers dari A nya dulu Berarti determinan A = min 2 min 31 min 1 berarti min 2 x min 1 adalah 2 Lalu 2 dikurang dengan min 3 kali 1 min 3 maka jadi 2 + 3 = 5 lalu kita akan mencariperutnya = 1 per 5 - 1 - 23 - 1 maka ini = 1 per 5 dikali minus 1 adalah min 1 per 51 atau 5 * 3 adalah 3 atau 51 atau 5 x min 1 min 1 per 51 per 5 dikali min 2 adalah min 2 per 5 Nah setelah kita dapat inversnya berarti tinggal kita kalikan dengan banyaknya berarti B dikalikan dengan a invers menjadi di sini 0 Min 5 10 Min 5 dikalikan dengan min 1 per 5 dan 3 per 5 min 1 per 5 Min 2/5oke, lalu untuk mengerjakan perkalian matriks itu berarti baris dikalikan dengan kolom nya jadi untuk yang pertama berarti 0 dikalikan dengan min 1 per 510 lalu ditambahkan dengan min 1 per 5 x min 5 itu adalah 1 Lalu setelah itu 0 dikali 3 per 1 adalah 0 Min 5 x min 2 per 5 itu berarti ditambahkan dengan 2 lalu untuk 10 x min 1 per 5 itu berarti sama dengan minus dua lalu Min 5 dikali min 1 per 5 itu = + 1 lalu 10 dikali 3 per 5 itu berarti 6 Min 5 dikali min 2/5 itu berarti + 2 maka di sini x nya itu sama dengan0 + 112 min 2 + 1 MIN 16 + 28, maka jawabannya adalah pilihan yang sekian pembahasan video kali ini sampai bertemu di pertama berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul MatematikaALJABAR Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks P=1 3 2 5 0 -5 dan Q=0 -1 -1 2 1 3. Jika R=PQ^T, matriks R adalah....Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videojika kita mendapat hal seperti ini maka kita gunakan konsep dari transpose matriks yaitu kita tukar nilai elemen pada baris menjadi kolom dan sebaliknya Jadi jika kita punya misalnya matriks A yaitu abcd maka peran posnya Bah menjadi BPD kita tukar baris dengan kolom jadi di sini adalah Q transposetransfusi adalah minus 1 minus 12 13 kemudian R adalah P dikali Q transpose jadi R adalah 1325 kali transfusi yaitu 2 - 11 - 13 kita gunakan cara perkalian kita pasangkan baris pada matriks pertama dengan Kolom pada matriks kedua jadi kita pasangkan dari 1 dengan 1 hasilnya adalah di baris 1 kolom 1 jadi 1 x 00 + 3 x minus 1 itu minus 3 + 1 kemudian kita pasangkan hari Sabtu dengan kolam 2 kita dapatkan hasilnya di baris 1 kolom 2, maka kita dapatkan 1 * 22 + 3, * 13 + 36 kemudian kita pasangkan garis 2 dengan kolom 1 maka kita dapatkan hasilnya di baris 2 kolom 1 hasilnya adalah 5 * 00 + 0 * 10 plus minus 5 x minus 15 kemudian kita pasangkan garis 2 dengan orang tua kita dapatkan 5 * 20 * 10 - 15 maka kita hitung masing-masing kita dapatkan matriks R adalah minus 3 dikurangi 2 minus 5 sebelas 5 - 5 jadinya jawaban yang tepat adalah yang B sampai jumpa di Pertanyaan selanjutnya Kelas 11 SMAMatriksInvers Matriks ordo 2x2Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1 adalah invers matrik, P dan Q^1 adalah invers matriks Q, maka tentukan determinan matriks P^-1 Q^-1.Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videojika melihat hal seperti ini maka cara mengerjakannya adalah menggunakan konsep determinan dan juga invers dan determinan dari matriks a b c d adalah a d min b c dari matriks a b c d adalah 1 per determinannya dikali dengan a&d di tukar tempat B dan C dikali negatif Kita punya persamaan teh invers G invers maka c invers adalah 1 per 2 kali 3 yaitu kurangi 1 dikali 5 yaitu 5 dikali dengan 2 dan 3 di tukar tempat 1 dan 5 x negatif kemudian dikali dengan Q invers invers adalah 1 per 5 kali 1 yaitu 5 dikurangi 4 dikali 1 yaitu 4 dikali dengan 1 dan 5 di tukar tempat 1 dan Min 4 xSama dengan 1 per 6 dikurangi 5 adalah 1 kali 3 min 1 Min 52 kemudian dikalikan dengan 1 per 11 min 1 nah akan menjadi 3 min 1 Min 52 X dengan 1 - 1 - 45 jika matriks 2 * 2 * matriks X 2 akan menjadi matriks 2 * 2 dengan elemen seperti ini ya. Nah kita akan menggunakan perkalian matriks untuk menyelesaikan ini = 3 x 1 adalah 3 plus dengan min 5 x min 1 adalah 5 kemudian 3 x min 4 adalah 12 kemudian ditambah dengan min 5 x 5 adalah minus 25 selanjutnya min 1 dikali 1 adalah1 ditambah dengan 2 x min 1 adalah min 2 kemudian min 1 x min 4 adalah 4 selanjutnya ditambah adalah 10 maka akan menjadi 8 - 37 1 dikurangi 2 adalah minus 3 dan 14 Nah kita akan mencari determinan dari matriks ini determinannya adalah 8 dikali 14 dikurangi dengan min 3 dikali minus 3780 X 14 adalah dikurangi dengan 111 maka determinan nya adalah 1. Jadi determinan dari matriks A invers dikali dengan matriks Q invers adalah 1 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

jika diketahui matriks p 2 2 3 5